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ABSTRACT 
An eigenvalue method is presented for solving the transient heat conduction problem with time-dependent 
or time-independent boundary conditions. The spatial domain is divided into finite elements and at each 
finite element node, a closed-form expression for the temperature as a function of time can be obtained. 
Three test problems which have exact solutions were solved in order to examine the merits of the eigenvalue 
method. It was found that this method yields accurate results even with a coarse mesh. It provides exact 
solution in the time domain and therefore has none of the time-step restrictions of the conventional 
numerical techniques. The temperature field at any given time can be obtained directly from the initial 
condition and no time-marching is necessary. For problems where the steady-state solution is known, only 
a few dominant eigenvalues and their corresponding eigenvectors need to be computed. These features 
lead to great savings in computation time, especially for problems with long time duration. Furthermore, 
the availability of the closed form expressions for the temperature field makes the present method very 
attractive for coupled problems such as solid-fluid and thermal-structure interactions. 

KEY WORDS Transient heat conduction Eigenvalue method Finite element method 

NOMENCLATURE 

defined by (10) and (13) 
thermal stiffness matrix or tensor 
vector of nodal heat load resulting from specified nodal temperature 
capacitance matrix or tensor 
vector of nodal heat load resulting from specified time derivative of nodal 
temperature 
boundary convection/radiation matrix or tensor 
vector of boundary nodal heat load resulting from specified boundary nodal 
temperature 

c ( s ) normalized constants, defined by (29) 
c specific heat 
ds defined by (38), dependent on ai and ci 
E defined by (8) 
Ew defined by (12) and (17) 
es defined by (39), dependent on bi 
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F 
Fr∞ 

f 

h 
hr 
k 
M 
M 2 , M 3 , M 4 
n 
Ps 
QiQ(es)i 

qi 
qi 
R 
T 
t 
W 
xα 
[Y], yis 

local heat flux defined by (4) 
ambient radiation flux defined by (6) 
element interpolation function 
boundary interpolation function 
convective heat transfer coefficient, defined by (5) 
radiative heat transfer coefficient, defined by (6) 
thermal conductivity 
total number of finite elements 
number of boundary elements of the second, third and radiation kinds, respectively 
outward normal to Ω 
principal coordinates, defined by (30) 
defined by (18), (23) 
generalized coordinates, defined by (14) and (19) 
dqi/dt 
defined by (9) and (16) 
temperature 
time 
internal heat generation rate per unit volume 
spatial coordinates 
eigenvector matrix defined by (30) 

Greek symbols 

αs 

βs 
A 
θ 
θ 

λs 
p 
c(s)Φ(s)i 

πs 

Γ 
Ω 

Subscripts 
g,h 
i 
l,m 
s 
0 
∞ 

Superscripts 

(e) 
(es) 
(s) 

defined by (36) 
defined by (37) 
triangular area 
T-T0 
trial surface temperature for iteration in linearized computation of radiative 
boundary condition 
eigenvalues 
density 
normalized eigenvectors 
defined by (32), dependent on Qi 
boundary 
domain 

denote condition at known node 
generalized coordinate index 
denote condition at unknown node 
eigenmode index 
initial condition 
ambient condition 

finite element index 
boundary element index 
eigenmode index 

INTRODUCTION 

In conventional finite difference and finite element methods for solving transient heat conduction 
problems, the time derivative is usually replaced by finite differences and the time-dependent 
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temperature field is obtained by using a step-by-step time-marching scheme. It is well known 
that the time step in the explicit schemes is severely restricted due to stability considerations, 
and the implicit schemes involve solving matrix systems and may lead to oscillatory results if 
the time steps are large. When the temperature field with long time duration is needed, the 
amount of computation required is considerable. For both explicit and implicit schemes, the 
time and spatial increments must be chosen with care and these increments are usually quite 
small to avoid stability and oscillations problems. 

A number of numerical techniques have been used to reduce the transient heat conduction 
equation to a system of ordinary differential equations by discretization in the spatial variables1. 
The discretizations can be finite element approximations (Galerkin and collocation) or finite 
difference approximations (method of lines). These techniques are then used in conjunction with 
a time-step ordinary differential equation integrator. 

Another method to solve the transient heat conduction equation is to transform the differential 
equation to an eigenvalue problem. The key feature of this approach is to express the time-
dependent temperature field in a linear combination of expressions which have exponential 
time dependence. It can be shown that the expansion in time is exact and no errors involving 
time are introduced. The eigenvalue method has been used by researchers in structural mechanics2 

but has received little attention in the heat transfer community. Zhong presented a variational 
method for solving transient heat conduction problems3 in which an approximate closed-form 
analytical solution is available. An eigenvalue method in finite difference scheme was applied 
to the transient heat conduction by Shih and Skladany4. Landry and Kaplan5 performed a 
comparison of the computer time required for the eigenvalue method and the conventional 
methods. They pointed out that the eigenvalue method requires a large amount of computer 
time when the number of spatial meshes is large. Haji-Sheikh et al.6,7 presented an analytical 
solution of the transient heat conduction equation in which the Galerkin method was used to 
calculate the eigenvalues but their form of solution was rather complicated because normalized 
eigenvectors were not used. 

The present work extends the analytical procedure used3 to solve the transient heat conduction 
problems using the finite element scheme. An analytical solution for the temperature at each 
finite element node is derived. Since the discrete analytical solution is given in closed form, it is 
convenient to extend the present method to treat fluid-solid and thermal-structure interaction 
problems. 

To test the validity of the present method, three test examples which possess exact solutions 
are solved. The major portion of the computation time is used to compute the values of eigenvalues 
and their corresponding eigenvectors. These eigenvalues and eigenvectors are calculated 
numerically using readily available library eigensystem routines. 

VARIATIONAL WEAK FORMULATION AND LAGRANGIAN EQUATION 
Consider the problem of transient heat conduction governed by: 

The initial condition is: 

θ(xα,0)=θ0(xα) in Ω (2) 
and the boundary conditions are 

θ(xα,t)=θw(xα,t) in Γ1 (3) 
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Here W, k, p and c are functions of position only, and Γ=ΣΓi is the surface bounding the closed 
region Ω; θ = T—T0 where T0 is the initial uniform temperature or an arbitrary reference 
temperature; is the trial surface temperature for iteration in linearized computation of the 
radiative boundary condition; ε is the emissivity and σ is the Stefan-Boltzmann constant. 

Multiplying (1) by the variation of θ and integrating over the spatial domain Ω, one can 
obtain the variational formulation of the transient heat conduction equation3,8: 

δE+δR = δA (7) 
where 

If we introduce the boundary conditions (3) to (6) into (7), the variational formulation can 
be written as: 

δE+δR+δEw=δAw (11) 
where 

We shall now construct the temperature field by means of a set n generalized coordinates 
qt(t), that is: 

θ = θ(qi,xa) i= l ,2 , . . . ,n (14) 
Using the generalized coordinates qi, the variational formulation (11) leads to the Lagrangian 
equation: 
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DISCRETE FINITE ELEMENT CLOSED-FORM SOLUTION 
The region Ω is divided into M elements and with N nodes. The discretization of the temperature 
field θ(xα, t) is carried out in terms of the generalized coordinates qi(t) using the finite element 
scheme. 

Suppose that the local approximation for θ in an element is expressed by: 

where is the local position function which is defined to have the value of unity at node 
l and zero at all the other nodes in a local element Ωe; the generalized coordinate represents 
the unknown value of 0 at node l; and is the known temperature at node g. L is the number 
of unknown nodes in an element and G is the number of nodes at which the value of θ is given. 
Throughout this paper, the unknown node is denoted by subscript l or m and the known node 
by g or h. 

By inserting (19) into (8), (16), (17) and (18), the local functions E(e), R(e), and in 
terms of the generalized coordinates can be obtained. The global functions E, R, Ew and Qi 
can be evaluated by summing the contributions from the individual elements (see Appendix A 
for details) 

where is the Boolean matrix, that is: 

By substituting (20) to (23) into (15), we obtain the following system of ordinary differentia 
equations: 

where 

f i = Q i - α i - b i - c i (26) 
We seek a solution in the form: 

qj=Φje-λt (27) 
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Direct substitution of the above form into the homogeneous part of (25) leads to: 
(aij+cij-λbij)Φj=0 (28) 

which is a generalized eigenvalue problem. If there are n generalized coordinates qi (i= 1,2,..., n) 
in the system, there will be n eigenvalues λs(s= 1,2,...,n) with n corresponding eigenvectors 

. The matrices [A + C] = (aij+cij)n x n and [B] = (bij)n x n are both positive definite, therefore 
the eigenvalues λs are all real and positive. 

The general solution to the homogeneous part of (25) can be expressed as a linear combination 
of 

where c(s) (s=l,2,...,n) are arbitrary constants which will be determined later through 
normalization of the eigenvectors 

To find a closed-form solution to (25), we introduce the principal coordinates ps (s = 1,2,..., n), 
which is defined by: 

{q} = [Y]{p} (30) 
where [Y] = (yis)n x n and 

The Lagrangian equations (15) can be written in the following form: 

where 

Using the following orthogonal relations, 

the functions E, Ew, and R can be written in terms of the principal coordinates: 

where 
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By substituting (34) and (35) into (31), we have 

We can choose as normalization by setting: 
βs=1 (42) 

and the solution of (41) is: 

where ps(t0) is the initial value of the principal coordinate ps. A similar form of (43) is given 
in Reference 3 except that (43) is directly applicable when the spatial domain is discretized by 
finite element approximations. 

If (πs—ds—es) is constant, i.e., the boundary conditions are independent of time, (43) can be 
integrated to give: 

The initial values of ps in (43) can be determined from (30) by using the initial value of qi(to), 
that is: 

(p(t0)}=[Y]-1{q(t0)} (46) 
where [ Y ] - 1 can be calculated by following3: 

[Y]-1=[Y]T[B] βs=l (47) 
From the above, we can see that the major computational effort for the eigenvalue method 

involves the calculation of the eigenvalues and the corresponding eigenvectors based on (28). 
The eigenvalues and eigenvectors can be obtained analytically if « is small. For large n, they 
can be carried out using EISPACK9 or other library routines. 

Once the eigenvalues and eigenvectors are known, the temperature field at any given time 
can be obtained in closed form through (30) and (43). It is important to note that for a given 
geometry, the eigenvalues and eigenvectors need to be solved only once for the entire time 
domain except when the convective or radiative heat transfer coefficients are time-dependent or 
temperature-dependent. 

COMPUTATIONAL EXAMPLES 
Square domain with mixed boundary conditions 

In order to assess the accuracy of the eigenvalue method, we first consider a square domain 
with mixed boundary conditions as shown in Figure 1. The governing equation is: 

with boundary conditions 
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and initial condition 
θ(x,y,0)=0 (50) 

The exact solution is10: 

Numerical solutions were obtained by using 50 linear triangular elements with 36 nodes 
(Figure 1) and 200 linear triangular elements with 121 nodes. The temperatures at locations 1 
and 2 shown in Figure 1 are presented in Table 1 where they are compared with the exact 
solution. It can be seen that the agreement is excellent and the errors decrease as time increases. 
The error is larger at smaller times due to the initial step increase in temperature at the boundary. 
In addition, the accuracy of the numerical solutions using the coarser grid is comparable to that 
of the finer grid. 

The results given in Table 1 are calculated when the full set of eigenvalue and eigenvectors 
were used. For the coarser grid, there are 24 eigenvalues and eigenvectors, whereas for the finer 
grid, there are 99. Since the computation of a partial set of eigenvalues and eigenvectors takes 
much less computer time than the full set, we look into the numerical results based on two 
partial sets. The first set, called the direct set, groups eigenvalues and eigenvectors based on the 
magnitude of the eigenvalues starting with the smallest eigenvalue. The second set, called the 

Table 1 Comparison between present method (50 and 200 elements) and exact solution (example 1, mixed boundary 
condition) 

Time 

0.1 
0.2 
0.3 
0.4 
0.5 

Exact 

0.6605 
0.7480 
0.7806 
0.7928 
0.7973 

q1 

50 E 

0.6662 
0.7529 
0.7830 
0.7939 
0.7978 

200 E 

0.6581 
0.7498 
0.7821 
0.7940 
0.7984 

Exact 

0.0605 
0.1480 
0.1806 
0.1928 
0.1973 

q2 

50E 

0.0719 
0.1528 
0.1830 
0.1939 
0.1978 

200 E 

0.0677 
0.1497 
0.1818 
0.1937 
0.1981 
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decomposed set, groups the contributions to the numerical result by separating terms with or 
without the exponential time dependence. 

Direct set: When the boundary condition is independent of time, the contribution of each 
eigenmode to the temperature at node i is given by combining (30) and (44), 

The cumulative contribution of the eigenmodes to the temperatures at locations 1 and 2 are 
plotted versus the number of eigenmodes in Figure 2 for the case of 50 elements with 24 generalized 
coordinates and in Figure 3 for the case of 200 elements with 99 generalized coordinates. It can 
be seen that in order to have reasonably accurate numerical results, approximately half of the 
eigenmodes are needed for both cases. 

Decomposed set: The solution given by (30) and (44) can be written as: 

where 

and 

In (53), is in effect the steady-state solution, and are the unsteady mode terms. The 
values for are listed in Table 2 and their cumulative contribution to the temperatures at 
locations 1 and 2 are also shown. It is clear that 3 or less eigenmodes are needed if the steady-state 
solution is known a priori. If is not known, rather than determining it through (54), it is 
easier to solve (25) by dropping the time-dependent term. 

The temperature at each node can be written in the form of (53). For example, the temperatures 
at locations 1 and 2 can be expressed as follows: 
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Table 2 Values of eigenmodes and their contribution to the temperatures at locations 1 and 2 (example l) 

s 

1 
2 
3 
4 

1 
2 
3 
4 

λs 

10.19 
21.75 
44.77 
57.73 

9.93 
20.21 
40.77 
51.27 

H(s)1 

0.1305 
0.0004 
0.0029 
0.0000 

0.1377 
0.0001 
0.0049 
0.0000 

t = 0.1 

q1 

0.6695 
0.6691 
0.6662 
0.6662 

0.6632 
0.6631 
0.6581 
0.6581 

H(s)2 q2 H(s)1 

24 generalized coordinates 

0.1308 
0.0003 

-0.0030 
0.0000 

0.0692 
0.0689 
0.0719 
0.0719 

0.0022 
0.0000 

99 generalized coordinates 

0.1379 
0.0001 

-0.0050 
0.0000 

0.0628 
0.0627 
0.0677 
0.0677 

0.0026 
0.0000 

t = 0.5 

q1 

0.7978 
0.7978 

0.7984 
0.7984 

H(s)2 

0.0022 
0.0000 

0.0026 
0.0000 

q2 

0.1978 
0.1978 

0.1981 
0.1981 

With 50 elements 
θ1(t)=0.8-0.3617e-10.19t-0.00374e-21.75t-0.2561 e -44 .77 t (56a) 
θ2(t)=0.2-0.3626e -10. l9t-0.00265e -21.75t+0.2664e -44.77t (56b) 

With 200 elements 
θ1(t)=0.8-0.3718e -9 .93t-0.00112e -20.21t-0.2907e -40.77t (57a) 
θ2(0=0.2-0.3721e-9.93t-0.00103e-2O.21t+0.2945e-40.77t (57b) 

when 0.1<t < 0.5. When t >0.5, only the first unsteady term needs to be included. 

Long-time solution with time-dependent boundary conditions 
The long-time solution with time-dependent boundary conditions will be considered for a 

one-dimensional plane wall with constant properties k, p, and c. The ambient temperature on 
the left-hand side is a time-dependent periodic function and the ambient temperature on the 
right-hand side is kept constant as shown in Figure 4. 

For large time, the exact solution of the surface temperature θL at the right-hand side is: 

We have solved this problem using two and eight one-dimensional linear elements. However, 
to illustrate the eigenvalue method, we will only give the details for the case of two linear elements 
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with three nodes. The matrices [A], [B], [C] and Qi are given as follows: 

The solution of the generalized eigenvalue problem, (28) yields the following eigenvalues and 
eigenvectors 

Here the eigenvectors were normalized, that is: 
c(s)=(1/pcL)1/2 s=1,2,3 (64) 

Since there are no known boundary nodes in the problem, d3 as defined by (38) and es as 
defined by (39) are both zero. The πs, are given by substituting (61) into (32) 

Assuming the initial temperature θ0 is zero, it follows that qi(0)=0 and ps(0)=0. The solution 
of the temperature field can be obtained using (30) and (43): 

The temperature at the right boundary (node 3) can be written as: 
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Table 3 Comparison between present method and exact long-time solution (time-dependent boundary conditions) 

Cycle 

1 

2 

3 

4 

t 

0 
6 

12 
18 

24 
30 
36 
42 

48 
54 
60 
66 

72 
78 
84 
90 

θ∞.1/A 

0.00 
1.00 
0.00 

-1 .00 

0.00 
1.00 
0.00 

-1 .00 

0.00 
1.00 
0.00 

-1 .00 

0.00 
1.00 
0.00 

-1 .00 

θL/A 

Present method 

Two elements Eight elements 

0.0000 
-0.5210 
-0.5245 
-0.8204 

-0.9053 
-0.6244 
-0.5421 
-0.8234 

-0.9058 
-0.6245 
-0.5421 
-0.8234 

-0.9058 
-0.6245 
-0.5421 
-0.8234 

0.0000 
-0.5170 
-0.5311 
-0.8196 

-0.8962 
-0.6244 
-0.5510 
-0.8233 

-0.8968 
-0.6246 
-0.5510 
-0.8233 

-0.8968 
-0.6246 
-0.5510 
-0.8233 

Exact 
solution 

-0.8963 
-0.6247 
-0.5517 
-0.8233 

where 

Table 3 gives a comparison between the present method using two and eight elements and 
the long-time exact solution (58) for the case of k/pcL2=0.1107 (h) -1, ω=π/12 (h)-1, θ∞,L/A= -1 
and Bi=1.622. Good agreement with the exact long-time solution is achieved after the third cycle. 

Example with radiative boundary conditon 
As a final example, we consider a simple one-dimensional problem with radiative boundary 

conditions on both sides as shown in Figure 5. A single linear element is chosen and the matrices 
[A], [B], and [C] are given as follows: 

and the generalized Qi are: 

For a plate with very high thermal conductivity, a uniform temperature can be assumed, the 
exact solution is: 

Since only one linear element was used and the two boundary temperatures are the same, the 
spatial temperature variation within the solid is ignored. Thus, the numerical solution should 
be compared with the lumped capacity solution given by (72). Table 4 describes the iterative 
process at t = 1h, where k/L=5 W/m2.K and pcL= 10W.h/m2.K. The initial condition is given 
by the results at the previous time at t=0.9h. It is shown that the convergence is very fast. 
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T1 
T2 
λ1 
λ2 
c(1)Φ(1)1 
c ( 2 ) Φ ( 2 )

1 
c(1)Φ(1)2 
c(2)Φ(2)2 
T1 
T2 

Table 4 Iterative process for radiative boundary condition 

1 

387.6186205 
= T1 

0.7924743537 
8.377423064 
0.316227766 
0.5477225576 
0.316227766 

-0.5477225576 
380.235582 
=T1 

Iteration 

2 

380.235582 
-T1 

0.7480482081 
8.244144628 
0.316227766 
0.5477225577 
0.316227766 

-0.5477225577 
380.2350751 
= T1 

3 

380.2350751 
= T1 

0.7480452165 
8.244135653 
0.316227766 
0.5477225577 
0.316227766 

-0.5477225577 
380.2350761 
= T1 

Table 5 Comparison of surface temperature between 
present method and exact solution (radiative boundary 

condition) 

t(h) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Present method 

480.44 
463.61 
448.91 
435.91 
424.29 
413.82 
404.30 
395.61 
387.62 
380.24 

Exact method 

480.38 
463.53 
448.81 
435.80 
424.18 
413.70 
404.19 
395.50 
387.51 
380.13 

The surface temperature obtained by the present method is compared with the exact solution 
in Table 5 and they are in excellent agreement. 

CONCLUSIONS 
A finite-element eigenvalue method was presented for solving transient heat conduction problems. 
The major advantage of this method over other conventional numerical methods is that there 
is no time-step restriction. When a large number of finite element nodes is needed. Reasonably 
accurate results can be obtained by using only a partial set of eigenvalues and eigenvectors, 
especially when the problem at hand has a steady-state solution which is known or can be 
determined by some other means. A closed-form expression for the temperature field is available 
which is very useful for coupled thermal-structure interaction problems. The results obtained 
using the present method were in excellent agreement with the exact solutions for three test 
problems. 

This method can be extended to solve various types of parabolic equations such as the transient 
heat conduction problem with phase change, and boundary-layer type equations. 
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APPENDIX A 
The coefficients aij, ai and a0 in (20) are given as follows: 
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and 

The coefficients cij, ci and c0 in (22) are given as follows: 

where 

The contribution to Qi by the individual element given in (23) is: 

In Appendix B, the coefficients of for plane 
and axisymmetric linear triangular elements are listed in Tables B1, B2 and B3. 

APPENDIX B 
Coefficients of for planar and axisymmetric 
linear triangular elements 

We consider only two-dimensional systems. For axisymmetric systems, the axial and radial 
coordinates are x and r, respectively. For planar systems, r is the same as the y coordinate. We 
assume the three nodes of a triangular element to be (I, J,K) and for the case of a boundary 
element, we choose nodes J and K to be at the boundary. An element can have one, two or three 
degrees of freedom corresponding to the number of generalized coordinates in the element. The 
coefficients are listed in the Tables B1, B2 
and B3. The various functions in these Tables are defined as follows: 



258 J1AKANG ZHONG ET AL. 

In the above functions, for axisymmetric problems, y=r which is the radial distance of a node 
from the line of symmetry; for planar problems, y = l. The variables ξ1, η1 for the triangular 
element with three nodes I, J, K are given by: 

Coeff. 

a(e)II 
a(e)JJ 
a(e)KK 
a(e)IJ 
a(e)IK 
a(e)JK 
a(e)I 

a(e)J 
a(e)K 
a(e)0 

Table B1 

3 freedoms 

A12(ξI,ξI,ηI,ηI) 
A12(ξJ,ξJ,ηJ,ηJ) 
A12(ξK,ξK,ηK,ηK) 
A12(ξI,ξJ,ηI,ηJ ) 
A12(ξI,ξK,ηI,ηK) 
A12(ξJ,ξK,ηJ,ηK) 
Al(γI,γJ,γK) 

+Al(γJ,γK,γI) 

+Al(γK,γI,γJ) 

0.0 

Coefficients of a(e) lm,a(e)0 and a(e)0 for an element with nodes I, J, K 

θj known 

A12(ξI,ξI,ηI,ηI ) 
0.0 
A12(ξK,ξK,ηK,ηK ) 
0.0 
A12(ξI,ξK,ηI,ηK ) 
0.0 
A12(ξI,ξJ,ηI,ηJ )θJ 
+Al(γI,γJ,γK) 

0.0 

A12(ξK,ξK,ηK,ηK )θ2J 
+Al(γJ,γK,γI) 

2 freedoms 

θK known 

A12(ξI,ξI,ηI,ηI ) 
A12(ξJ,ξJ,ηJ,ηJ 
0.0 
A12(ξI,ξJ,ηI,ηJ ) 
0.0 
0.0 
A12(ξI,ξK,ηI,ηK)θK 
+Al(γI,γJ,γK) 

A12(ξJ,ξK,ηJ,ηK) 
+Al(γJ,γK,γI) 
0.0 

A12(ξK,ξK,ηK,ηK )θ2K 
+Al(γK,γI,γJ) 

1 freedom 

θJ,θK known 

A12(ξI,ξI,ηI,ηI ) 
0.0 
0.0 
0.0 
0.0 
0.0 
A12(ξI,ξJ,ηI,ηJ )θJ 
+A12(ξI,ξK,ηI,ηK)θK 
+Al(γI,γJ,γK) 
0.0 

0.0 

A12(ξJ,ξJ,ηJ,ηJ ) 
+2A12(ξK,ξK,ηK,ηK )θJθK 
+A12(ξK,ξK,ηK,ηK )θ2K 
+Al(γJ,γK,γI)θJ 
+Al(γK,γI,γJ)θK 
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Table B2 Coefficients of for a element with nodes I, J and K 

Coeff. 

b(e)11 
b(e)JJ 
b(e)KK 
b(e)IJ 
b(e)IK 
b(e)JK 
b(e)I 

b(e)J 
b(e)K 
b(e)O 

3 freedoms 

B11(γIγJ,γK) 
B11(γJγK,γI) 
B11(γKγI,γJ) 
B12(γIγJ,γK) 
B12(γIγK,γJ) 
B12(γJγK,γI) 
0.0 

0.0 
0.0 
0.0 

θJ known 

B11(γIγJ,γK) 
0.0 
B11(γKγI,γJ) 
0.0 
B12(γIγK,γJ) 
0.0 

2 freedoms 

θK known 

B11(γIγJ,γK) 

B11(γJγK,γI) 
0.0 
B12(γIγJ,γK) 
0.0 
0.0 

1 freedom 

θJ,θK known 

B11(γIγJ,γK) 
0.0 
0.0 
0.0 
0.0 
0.0 

Table B3 Coefficients of for boundary nodes J and K 

Coefficients 2 freedoms 

C22(γK,γJ) 
C23 
0.0 
0.0 
0.0 
Q2(γJ,γK) 
Q2γK,γJ) 

θJ known 
0.0 
C22(γk,γJ) 
0.0 
0.0 
C23θJ 
C22(γJ,γK)θJ

2 

0.0 
C22(γK,γJ) 

1 freedom 

θK known 

C22(γJ,γK) 
0.0 
0.0 
C23θK 
0.0 
C22(γJ,γK)θ2K 
Q2(γJ,γK) 
0.0 


